

Registered AD

HZL/CLZS/ENV/33/2020-21/

16.11.2020

To,

Shri V K Singh, IFS Additional Principal Chief conservator of forest (C) Ministry of Environment and Forests and climate change Regional officer(CZ) Kendiya Bhawan, 5 Floor, Sector H – Aliganj, LUCKNOW – 226024,

Sub : Six monthly Environmental compliance report.

Ref :

Environmental Clearance Letter No. J-11011/158/2003-IAII(I) DATED, 31.03.2004

Sir,

Please find enclosed herewith the six monthly compliance report with reference to above Environmental Clearances for Hydro I & 154 MW CPP for Period 01.04.2020 to 30.09.2020.

With all the enclosures.

Thanking you,

Yours faithfully,

(T K MEGHWAL) Sr.Manager (Environment)

Hindustan Zinc Limited

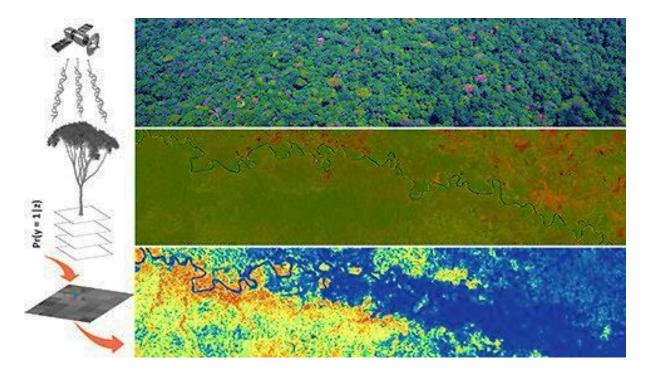
Sensitivity: Internal (C3)

Chanderiya Lead Zinc Smelter P.O. Putholi, Chittorgarh (Rajasthan) - 312 021 T+91-1472 254 017 F+91-1472 253 016 www.hzlindia.com Registered Office : Yashad Bhawan, Udaipur (Rajasthan) - 313 004 CIN : L27204RJ1966PLC001208

HYDRO 1 PLANT & 154 MW CPP

Environment Compliance Report of Chanderiya Lead Zinc Smelter, Chittorgarh with reference to Environmental Clearance letter No. J-11011/158/2003-IAII(I) dtd. 31/03/04) FOR Zn SMELTER & CPP 154 MW

CONDITIO	ON	STATUS		
A. SPECIFIC CONDITIONS				
i The gaseous emission process units shout standards prescribed authorities from time board may specify more for the relevant param the nature of the indu- location. At no time should go beyond the In the event of failure of system adopted by th unit should not be rest measures are rectified	Id confirm to the by the concerned to time. The state re stringent standards neters keeping in view ustry and its size and the emissions level prescribed standards. of any pollution control ne unit, the respective tarted until the control	 Pollution control systems are interlocked with process; and it is being ensured that emission levels are well below prescribed limit at any time. Process is interlocked with pollution control measure. The respective unit should not be restarted until the control measures was rectified to achieve the desired efficiency. 		
ii As reflected in the Contact Double adsorp sulphuric acid recover set up. The stack fro plant should be provid emission monitoring continuous monitoring	ption (DCDA) plant for y from SO2 should be om the sulphuric acid ded with online stack g equipment for j of SO2. As per the ade in charts for lity for environment ssion limit should be 2 kg/tonne of H_2SO_4 ist limit of 50 mg/m3 by December 2006.	 The Double conversion Double absorption Sulphuric Acid Plant has commissioned and meeting Sulphur di-oxide norm of 2 Kg/ T of Product Acid and acid mist 50 mg/m3. Continuous monitoring system for SO2 monitoring has already been installed and is being operational. Very effective catalyst cesium based V2o5 is used for better conversion. More than 100 mts tall stack was installed. Monitoring result of Acid Plant are attached as Annexure I 		
sprinkling system. T	onitored for prevailing arly. Fugitive dust concentrate handling transfer points should provision of water the company should house keeping by I roads and to reduce	 attached as Annexure 1 1) In order to minimize fugitive emissions Zn Concentrate containing 8-10% moisture is being handled. 2) Provision of water sprinkling at Zn concentrate stock yard has been provided and working satisfactorily. 3) Dust control system has been provided at material transfer points. 		


	movements.	4) Mobile Vacuum dust sweeping system on industrial roads and vacuum dust cleaning system for plant area are exist at smelter to control airborne dust due to the vehicles movement.
		5) Regular road washing is being done on industrial roads.
		 6) Truck & truck tyre washing system has been provided and working satisfactorily.
		7) All roads are pakka and concreted
		Photographs for Road Vacuum Sweeper is attached as Annexure II
iv	The company should install fume extractors and bag filters to control the emissions from all melting and casting units. The emissions shall conform to the prescribed standards of 50 mg/Nm3. The particulate emissions from the captive power plant should be controlled by installation of ESP and controlled within the stipulated limits of 50 mg/Nm3.The low NOx burners should be installed to control the NOx emissions.	 Bag filters have been provided in order to meet out the prescribed norms. High efficiency ESP and low NOx burners have been provided at Power Plant to control emissions from plant and meeting the stipulated limits.
V	As reflected in the EIA /Environmental Management plan, discharge of process effluent shall not exceed 139 m3/hr. The treated effluent should confirm the prescribed standards and recycled to maintain the zero discharge. Reverse Osmosis plant should be installed for treatment of surplus effluent for reuse in the process to achieve zero discharge. The rejects from the RO plant should be evaporated in a solar evaporation pond to be constructed within smelter premises.	from the premises of the industry.
vi	The solid/hazardous waste/sludge generated from the process units should be disposed off in a secured double lined landfill with leachate collection and leak	 Jarosite is stabilized with lime and Cement into Jarofix and disposed to lined Jarofix disposal yard in systematic way.

1	detection evotors. As reflected in ELA /EMD	2) Decign is approved from DODOD
	detection system. As reflected in EIA /EMP report, the Jarosite should be stabilized to jarofix by application of technology obtained	 Design is approved from RSPCB and CPCB guidelines.
	from M/s Canadian Electrolyte Zinc Limited. The landfill should be constructed at a safe height from the highest water table; The design of the land should be approved by SPCB as per Hazardous Wastes	 Anode mud is being recycled back in to the process. Surplus, if any is being disposed into SLF after stabilization.
	(Management and handling) Rules, 2003. Ground water quality in the vicinity of the landfill should be regularly monitored by construction of Piezometers. The efforts	 1005 flyAsh generated from Power Plant is being given to Cement plants,
	should be made to self spent to the authorized reprocesses. The anode mud should be recycled in the leaching plant.	5) Bottom ash is also being disposed to brick manufacturers.
	The ash generated from the captive power plant should be provided to the cement manufacturing unit. The surplus quantity if any, should be disposed off in the ash disposal area by dry disposal method. The Piezometers should be constructed around the ash disposal area to monitor the ground water quality.	 Piezo wells Have been installed at down/ up stream of Secured land Fill, Jarofix Yard. Monitoring of the Piezometer water is being done regularly. Periodically inspection is being carried out by Statutory authority.
		Monitoring of Piezometer water
<u>.</u>		analysis enclosed as Annexure III
vii	Green belt of adequate width and density in	1) Green belt of adequate width and
	and around the captive power plant should be developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. Around the periphery of plant and township, canopy based green belt should be developed.	 density in and around the captive power plant is being developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. 2) Canopy based greenbelt is already been developed around periphery of plant and township . 3) Presently 121.77 Ha. of green area is been developed inside CLZS Complex which is more than 33% of the Plant area.
	be developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. Around the periphery of plant and township, canopy based green belt should	 power plant is being developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. 2) Canopy based greenbelt is already been developed around periphery of plant and township . 3) Presently 121.77 Ha. of green area is been developed inside CLZS Complex which is more than 33% of the Plant area. Details of Green Belt are enclosed -
1	be developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. Around the periphery of plant and township, canopy based green belt should	 power plant is being developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. 2) Canopy based greenbelt is already been developed around periphery of plant and township . 3) Presently 121.77 Ha. of green area is been developed inside CLZS Complex which is more than 33% of the Plant area.
l	be developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. Around the periphery of plant and township, canopy based green belt should be developed. The project authorities must strictly adhere to the stipulation made by the Rajasthan State Pollution Control Board and the State	 power plant is being developed in consultation with the DFO in 61.12 ha. of area in addition to the existing area already brought under green belt. 2) Canopy based greenbelt is already been developed around periphery of plant and township . 3) Presently 121.77 Ha. of green area is been developed inside CLZS Complex which is more than 33% of the Plant area. Details of Green Belt are enclosed - Annexure IV All the statutory norms prescribed by

 collected treated so as to conform to the standard prescribed under GSR 422 (E) dated 19th May 1993 and 31st December 1993 or as amended form time to time. The treated waste water should be recycled in the plant as well as utilization for plantation purposes. v The project authorities must strictly comply with the rules and regulation with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management and Handling) Rules, 2003. Authorization from the State Pollution Control Board must be obtained for collection, storage, treatment and disposal of hazardous wastes. vi The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers , enclosures etc. on all sources of 	monitoring stations should be established in the downward direction as well as where maximum ground level concentration of SPM, SO2, and NOx are anticipated in consultation with the Rajasthan State Pollution Control Board. Data on ambient air quality and stack emission should be regularly submitted to this Ministry including its Regional Office at Lucknow and the State Pollution Control Board/Central Pollution Control Board once in six months.	qualitymonitoringstationswasestablished in the downward direction aswell as where maximum ground levelconcentration of SPM, SO2, and NOxare anticipated in consultation with theRajasthan State Pollution Control Board.(2) Data on ambient air quality and stackemission is being regularly submitted tothis Ministry including its Regional Officeat Lucknow and the State PollutionControl Board/Central Pollution ControlBoard once in six months.Details of Ambient Air Qualityenclosed -Annexure VDetails of Stack Monitoring isenclosed as -Annexure VI
 v The project authorities must strictly comply with the rules and regulation with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management and Handling) Rules, 2003. Authorization from the State Pollution Control Board must be obtained for collection, storage, treatment and disposal of hazardous wastes. vi The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers , enclosures etc. on all sources of accordance with the Hazardous wastes. 	collected treated so as to conform to the standard prescribed under GSR 422 (E) dated 19 th May 1993 and 31 st December 1993 or as amended form time to time. The treated waste water should be recycled in the plant as well as utilization for plantation	
vi The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of acoustic hoods, silencers	v The project authorities must strictly comply with the rules and regulation with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Wastes (Management and Handling) Rules, 2003. Authorization from the State Pollution Control Board must be obtained for collection, storage, treatment and disposal	accordance with the Hazardous Wastes and other Waste (Management and Handling & Trans boundary) Rules, 2016. (2) Authorization from the State Pollution Control Board already obtained for
should conform to the standards prescribed under EPA Rules, 1989 viz 75 dBA (daytime) and 70 dBA (nighttime) (daytime) and 70 dBA (nighttime) (daytime) and 70 dBA (nighttime)	vi The overall noise levels in and around the plant area should be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz 75 dBA	 (1)The overall noise levels in and around the plant area is being kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. (2)The ambient noise levels are observed very below to the standards prescribed under EPA Rules, 1989 viz 75 dBA (daytime) and 70 dBA

		is enclosed as -Annexure VII		
vii	Occupational Health Surveillance of the workers should be done on a regular basis and records maintained as per the Factories Act.	Being done and records are maintained.		
Viii	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA/EMP/risk analysis and DMP report.	We are complying all the recommendations of EIA/EMP/Risk/DMP.		
ix	The project authorities will provide adequate funds both recurring and non-recurring to implement the conditions stipulated by the Ministry of Environment and forests as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided should not be diverted for any other purposes.	Funds are allocated for capital and revenue expenditures and no fund is diverted to other jobs		
x	The Regional Office of this Ministry at Luck now/Central Pollution Control Board/State Pollution Control Board will monitor the stipulated conditions. A six monthly compliance report and the monitored data along with statistical interpretation should be submitted to them regularly.	Last report submitted in the month of June 2020 while quarterly reports being sent to SPCB regularly and statistical interpretation data submitted to SPCB regularly.		
xi	The Project Proponent should inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the State Pollution Control Board/Committee and may also be seen at Website of the Ministry of Environment and Forests at http:/envfor.nic.in This should be advertised within seven days from the date of issue of the clearance letter at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional Office.	Condition already complied with. Accordance of EC advertised in two local widely circulated in leading news paper ,copy was already been submitted to t to your good office.		

Greenbelt Estimation using GIS Chanderiya Lead Zinc Smelter, HZL

November 2020

Terracon Ecotech Private Limited

202, Kingston, Tejpal Road, Vile Parle (East), Mumbai, Maharashtra 400057 www.terraconindia.com

Acknowledgement

We are thankful to Mr. Sachin Samar, Head, Environment, Chanderiya Lead Zinc Smelter (CLZS) for assigning us this opportunity to estimate greenbelt using GIS. We express our gratitude to thanks his unrelenting support, coordination, invaluable inputs and active involvement in the Project.

This project also involved various staff members from CLZS, we thank each and every one of them for their active involvement leading to successful and timely completion of the project.

shou Jain

Ashok Jain Managing Director Terracon Ecotech Private Limited

Executive Summary

A systematic mass plantation of pollution tolerant trees in order to mitigate air pollution by filtering, intercepting or absorbing air pollutants is known as **'Greenbelt'**. A greenbelt around industrial areas aims at creating pollution free, sustainable environment.

Greenbelt can be mapped using either remotely sensed data obtained from satellite, drones, or aircraft or digitization of green areas using GIS software like ArcGIS, ERDAS, QGIS, etc. The satellite data in form of multispectral imagery consist of data obtained on different wavelengths in an electromagnetic spectrum. These data can be used to calculate vegetation indices for obtaining the amount of green cover and tree cover.

For the estimation of green cover in Chanderia Lead Zinc Smelter (CLZS), Modified Soil Adjusted Vegetation Index (MSAVI-2), a modified version of the NDVI index was used. For calculation of Modified MSAVI-2, Pléiades 1 satellite imagery (29th February 2020) was

procured. Pléiades 1 product has a spatial resolution of 0.5m. 'Indices' tool in unsupervised classification tab in ERDAS software was used.

Class	Area in Hectares	Percentage
Green cover	166	37

The total area of CLZS is 437 hectares. The MSAVI-2 analysis revealed that the total green cover area is 166 hectares i.e. 37% of total CLZS area. Out of 166 hectares, 34 hectare area has a new plantation of around 1-2 years old. The balance 132 hectares accounts to trees, shrubs, herbs and lawns.

Table of Contents

Acknowledgement	i
Executive Summary	ii
Introduction	1
Profile for Study area	2
Geographical Details	3
Methodology	4
Green Cover of CLZS	5
Green cover map	6
Green cover and new plantation map	7
False colour composite image with 1km buffer	8
False colour composite image	9
Landuse map	10
Plantation efforts by CZLS	11

Introduction

A systematic mass plantation of pollution tolerant trees in order to mitigate air pollution by filtering, intercepting or absorbing air pollutants is known as **'Greenbelt'**. A greenbelt around industrial areas aims at creating pollution free, sustainable environment.

Green belts are often recommended for Industries as a part of Environment management strategies. Green belt is recognized to provide multifunctional services and aid in sustainable development. Industrialized areas often face air pollution problems and higher atmospheric temperatures due to anthropogenic activities. The ambient air quality of an industrialized area can be restored by creating an effective greenbelt design. Many times, industries are located near settlements. In such scenario, restriction of pollutants near its source by creating vegetation buffer is the most suitable practice. Creation of such buffer zone needs systematic plantation of trees and shrubs.

Green belt is essential; in many ways that eventually lead to conservation of biodiversity. They are often safeguarded in the sense that developmental activities are prohibited in these selected areas and these locations will only be used for growing vegetation. An ideal greenbelt consists of diverse woody plants that aid in pollution mitigation as well as maintain the ecological balance of the surrounding environment, along with lawns, herbs and shrubs. Greenbelt development provides benefits such as –

- Overall improvement of the environmental conditions of a region.
- Mitigation of air pollution as well as enhancement of biodiversity and aesthetic value of a particular area
- Prevention of soil erosion and ultimately, land degradation
- Attenuates noise pollution as plants are efficient absorbers of noise
- Provides regulatory and supporting ecosystem services such as micro-climate regulation, carbon sequestration, etc.

Greenbelt Benefits

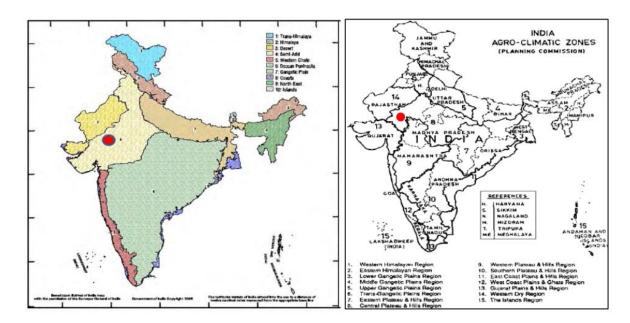
Noise control

Air pollution control

Profile for Study area

Chanderiya Lead Zinc Smelter (CLZS) is world's largest integrated smelter located in the Chittorgarh district of Rajasthan. CLZS, hereafter called study area, is situated on an area of 437 hectares. There are various units of hydro and pyro smelting processes. It also has several administrative buildings. A small residential colony, CSF is located near the main entrance.

Study area boundary


The study area has an existing greenbelt zone which forms the major green cover of the factory area. It is surrounded by settlements like Billiya Khera, Putholi, agricultural fields, and other small marble industries. Vedanta formally began its commitment to biodiversity protection in 2011 by drafting its Biodiversity Policy. The current study has been carried out to observe the progress of the greenbelt developmental efforts and to monitor the extent of the increase in green cover.

Geographical Details

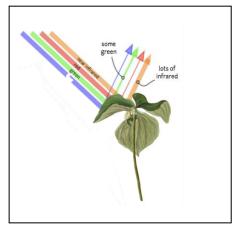
The study area is located in the south-eastern part of Rajasthan. The major land use in this locality is agricultural fields and is followed by settlements and industries. It lies in the Central Plateau and Hills Agro-climatic zone.

Agro climatic zone	Central plateau and hills		
Biogeographic zone	Semi-arid		
Biotic province	Gujarat, Rajputana		

Bio-geographic map (left) and agro-climatic zone map (right) of India with the factory area location

The Land-use map indicates that the study area is highly industrialized with around 58% builtup barren land area and areas covered by industrial operations. There are also some waterbodies present forming to around 3.20% of the total area. The table for landuse areas is given below.

Class	Area in Ha		
Built-up/barren land	257		
Waterbody	14		
Green cover	166		



Methodology

Green cover or Greenbelt can be mapped using either remotely sensed data obtained from satellite, drones, or aircraft or digitization of green areas using GIS software like ArcGIS, ERDAS, QGIS, etc. The satellite data in form of multispectral imagery consist of data obtained on different wavelengths in an electromagnetic spectrum. These data can be used to calculate vegetation indices for obtaining the amount of green cover.

Vegetation indices are combinations or transformations of spectral bands in remote sensing to give prominence to spectral properties of plants and other types of vegetation. This makes them stand out from other features allowing us to calculate the cover of vegetation in a particular area. Vegetation indices are capable of providing us information like % green cover,

biomass, and leaf area index. The calculations of these indices depend upon the difference between the reflectance and absorption capabilities of plants. Since plants reflect more in the near-infrared region and green region of the electromagnetic spectrum and absorb the rest of wavelengths like red, blue, the difference between NIR and red bands allowing us to extract vegetation features. Temporal analysis of vegetation indices allows us to track changes in the amount of green cover as well as its health. For the estimation of green cover in CLZS, MSAVI, a modified

version of the NDVI index was used. MSAVI- 2 minimizes the effects of soil spectral signatures this assist in extraction of only vegetation pixel rather than mixed pixels of soil and vegetation which sometimes happens in case of NDVI.

For calculation of MSAVI-2, Pléiades 1 satellite imagery was procured. Pléiades 1 product has a spatial resolution of 0.5m dated 29th February 2020. ERDAS has a tool called as indices in its unsupervised classification tab. It has a collection of different vegetation indices among which MSAVI-2 will be selected. The input in the processing box was .img file of Pléiades 1 with required bands RED and NIR. The formula for the index is already integrated into the tool.

The formula for MSAVI-2 is as follows

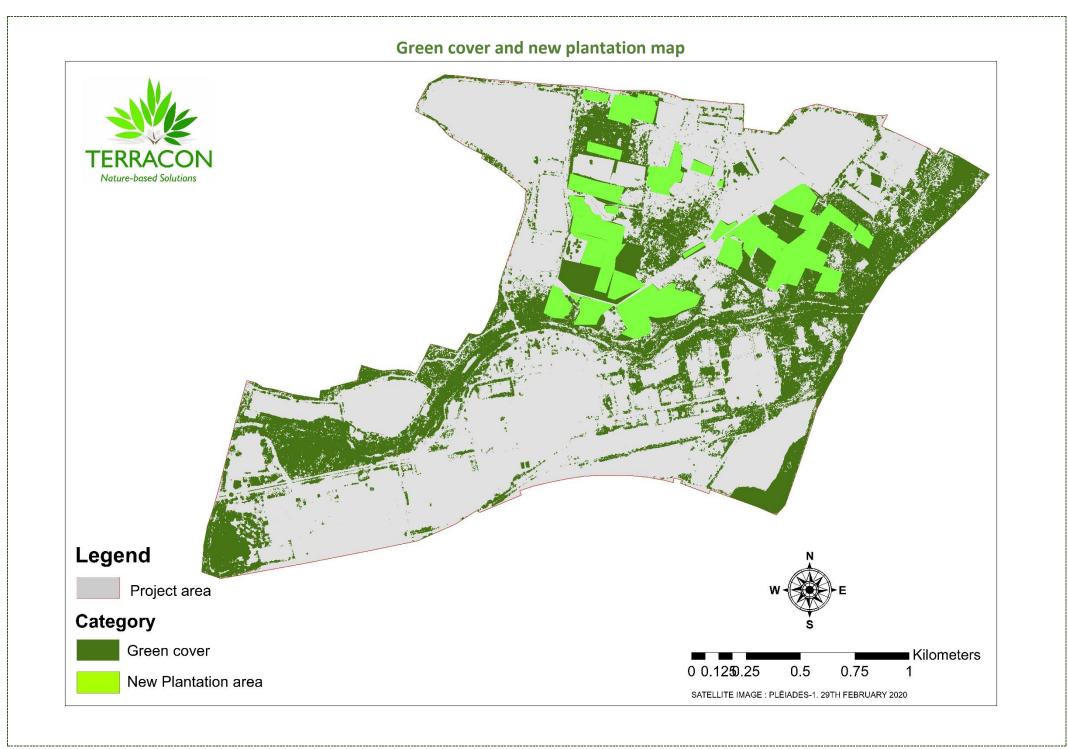
$$MSAVI2 = \frac{\left(2*NIR+1-\sqrt{(2*NIR+1)^2-8*(NIR-RED)}\right)}{2}$$

Disclaimer: The green cover was calculated using 0.5m satellite imagery using vegetation indices. Due to travel restriction on account of covid situation the ground truthing has not been carried out to verify the results on the ground.

Green Cover of CLZS

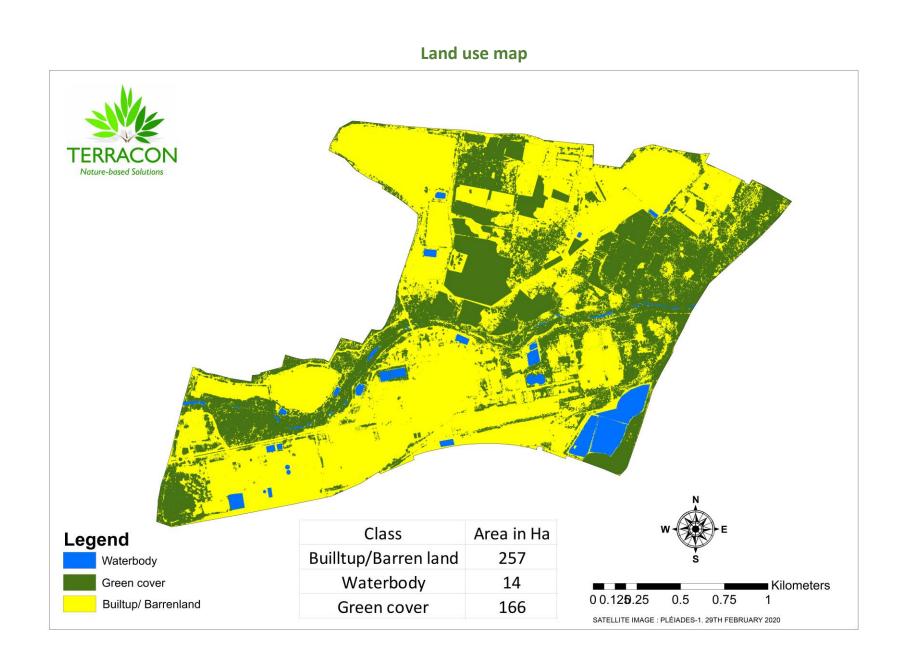
A green cover is natural or planted vegetation covering a certain area of the terrain, functioning as protection against soil erosion, protecting the fauna, and balancing the temperature.


Green cover consists of total tree cover and total green cover. Total tree cover can be calculated by measuring the tree attributes but area occupied by lawns, herbs and shrubs cannot be estimated by the same method. Green cover of a greenbelt is carried out using Vegetation indices. It predicts the percentage of total area of the unit that is under vegetation. According to the CPCB guidelines, there is a prescribed percentage of green cover for a healthy society and determining the green cover allows understanding where the unit stands in developing its greenbelt.


The Green cover of study area is as follows:

Green Cover in Hectares	166
Total study area in Hectares	437

The total area of CLZS is 437 hectares. The MSAVI-2 analysis revealed that the total green cover area is 166 hectares i.e. 37% of total CLZS area. Out of 166 hectares, 34 hectare area has a new plantation of around 1-2 years old (Refer to 2nd map below). The balance 132 hectares accounts to trees, shrubs, herbs and lawns. This 1-2-year-old samplings will gradually grow to an extent which will get converted into thick vegetation.



False colour composite image with 1km buffer

False colour composite image

Plantation efforts by CZLS

Project Name	Greenbelt Estimation Using GIS	
Client	CHNADERIYA LEAD ZINC SMETLER, HINDUSTAN ZINC LIMITED	
Contact Person	MR. SACHIN SAMAR	
Consultant	Terracon Ecotech Private Limited 202, Kingston, Tejpal Road, Vile Parle (East), Mumbai 400057 www.terraconindia.com	
Consultant Team	Dr. Ninad Raut, Lead, Ecology and Biodiversity Mr. Akshay Nachane, Co-Lead, Ecology and Biodiversity Ms. Pratiksha Chalke, Analyst, Biodiversity (GIS)	
Project Co-ordinator	Mr. Akshay Nachane Co-Lead, Ecology and Biodiversity Terracon Ecotech Private Limited	

Terracon Ecotech Private Limited

202, Kingston, Tejpal Road, Vile Parle (East), Mumbai 400057 W: <u>www.terraconindia.com</u>; E: <u>info@terraconindia.com</u> P: +91 22 20863940/41

HINDUSTAN ZINC LIMITED

CHANDERIA LEAD ZINC SMELTER

Work Zone (8 - Hours) Environment Monitoring Results

(Apr'20 - Sept'20)

Month Location	Parameters/Unit	Prescribed Standards*	Apr'20	May'20	Jun'20	Jul'20	Aug'20	Sep'20
	1	Pyro, Cl	P, H-1 & F	I-2 Plant				
	SPM mg/m3	10	0.728	0.410	0.666	0.577	0.600	0.666
Pyro RMH	SO ₂ mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
	Zn mg/m3	5	0.134	0.124	0.131	0.125	0.189	0.196
Dura Cintan	SPM mg/m3	10	0.575	0.501	0.600	0.615	0.615	0.662
Pyro Sinter	SO ₂ mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
Area	Zn mg/m3	5	0.123	0.109	0.199	0.163	0.166	0.162
H -1	SPM mg/m3	10	0.625	0.666	0.487	0.443	0.509	0.531
Purification	SO ₂ mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
Section	Zn mg/m3	5	0.112	0.117	0.081	0.178	0.087	0.083
H – 1 Cell	SPM mg/m3	10	0.152	0.176	0.221	0.153	0.136	0.150
House	SO ₂ mg/m3	5	0.349	0.537	0.354	0.288	0.298	0.266
nouse	Zn mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
LDD Conting	SPM mg/m3	10	0.602	0.556	0.659	0.552	0.527	0.491
LRP Casting Area	SO ₂ mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
Area	Pb mg/m3	0.15	BDL	BDL	BDL	BDL	BDL	BDL
LRP K-5	SPM mg/m3	10	0.583	0.618	0.549	0.637	0.637	0.615
Dross Area	SO ₂ mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
DIUSS Alea	Pb mg/m3	0.15	BDL	BDL	BDL	BDL	BDL	BDL
H-2 Cell	SPM mg/m3	10	0.164	0.155	0.120	0.111	0.116	0.110
House	SO ₂ mg/m3	5	0.452	0.590	0.341	0.232	0.264	0.288
nouse	Zn mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
CPP Coal	SPM mg/m3	10	0.444	0.424	0.396	0.466	0.531	0.400
Yard	SO ₂ mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL
Talu	Zn mg/m3	5	BDL	BDL	BDL	BDL	BDL	BDL

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

HINDUSTAN ZINC LIMITED

CHANDERIA LEAD ZINC SMELTER

Work Zone (15 – Minute) Environment Monitoring Results

(Apr'20 - Sept'20)

Month Location	Parameters/Unit	Prescribed Standards*	Apr'20	May'20	Jun'20	Jul'20	Aug'20	Sep'20
		Pyro, C	PP, H-1 & F	I-2 Plant		1		1
	SPM mg/m3	-	3.00	5.33	4.66	6.33	5.00	3.66
Pyro RMH	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
	Zn mg/m3	10	0.051	0.063	0.07	0.03	0.07	0.05
	SPM mg/m3	-	4.33	4.66	5.33	4.66	4.00	3.66
Pyro Sinter	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
Area	Zn mg/m3	10	0.092	0.058	0.08	0.07	0.05	0.04
H -1	SPM mg/m3	-	3.66	2.66	4.00	5.00	2.00	3.00
Purification	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
Section	Zn mg/m3	10	0.05	0.02	0.05	0.05	0.02	0.02
000000	SPM mg/m3	-	4.33	3.33	3.66	4.00	3.66	4.66
H – 1 Roster	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
Area	Zn mg/m3	10	0.03	0.05	0.05	0.05	0.04	0.06
	SPM mg/m3	-	4.66	5.00	4.66	3.66	4.00	5.33
LRP Casting	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
Area	Pb mg/m3	-	BDL	BDL	BDL	BDL	BDL	BDL
	SPM mg/m3	-	3.66	3.33	4.33	5.33	3.66	5.00
LRP K-5	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
Dross Area	Pb mg/m3	-	BDL	BDL	BDL	BDL	BDL	BDL
	SPM mg/m3	-	4.33	3.66	3.00	4.33	3.00	4.66
H-2 Roaster	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
Area	Zn mg/m3	10	0.16	0.06	0.04	0.06	0.03	0.05
	SPM mg/m3	-	2.66	4.33	3.66	3.33	4.33	4.00
CPP Coal	SO ₂ mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL
Yard	Zn mg/m3	10	BDL	BDL	BDL	BDL	BDL	BDL

Tarun Kumar Meghwal **Environment Head** Chanderia Lead Zinc Smelter

0

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter

STACK HEIGHT - PYRO PLANT

S. No. Stack Attached to		Height(m)
Ausmelt		35
1	Dust extraction system of feed handling	30
2	Hygeine and ventilation system	52
3	Ausmelt furnace	55
4	SO2 absorption tower	
Hydro 1		30
1	Zinc dross milling bag filter	30
2	Zinc atomizing bag filter	30
3	Zinc melting furnace bag filter (1st stack)	30
4	Zinc melting furnace bag filter (2nd stack)	100
5	Acid plant	
Pyro		45
1	Sinter venturi	75
2	Sinter main	75
3	Crusher venturi	75
4	Crusher bag filter	75
5	ISF slagging floor	35
6	ZRP fume extraction	75
7	ZRP ventilation stack	75
8	LRP	30
9	Copper recovery plant	34
10	Copper drossing	75
11	TGT (Acid plant)	
Hydro 2		30
1	Zinc melting furnace bag filter	30
2	Zinc dross milling bag filter	30
3	Zinc atomizing bag filter	100
4	Acid plant	
CPP		165
1	Captive power plant	165
2	Captive power plant-Phase-II	30
3	16 MW DG SET	

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

Sensitivity: Internal (C3)

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter

Stack Monitoring Results (PM & LEAD)

(APR'20 - SEPT'20)

Location	Parameters	Limit	Unit	Result Apr-Jun'20	Result Jul-Sept'20
Sinter Main	PM	150	Mg/nm3	15.76	47.58
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	4.12
Sinter Venturi	PM	150	Mg/nm3	11.40	37.74
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	3.58
Crusher Main	PM	150	Mg/nm3	28.70	32.48
	Lead	[^] 10	Mg/nm3	BLQ(LOQ 0.005)	3.22
Crusher Venturi	PM	150	Mg/nm3	11.16	27.45
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	2.89
LRP Main	PM	150	Mg/nm3	6.16	15.25
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	0.80
ZRP Main		PSD	1		
ZRP Fume		PSD			

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter <u>Stack Monitoring Results (PM & LEAD)</u> (APR'20 - SEPT'20)

Location	Parameters	Limit	Unit	Result Apr-Jun'20	Result Jul-Sept'20
LRP Copper Drossing	PM	150	Mg/nm3	35.0	23.65
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	2.74
ISF Slagging Floor	PM	150	Mg/nm3	35.57	42.63
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	3.01
CRP Milling	PM	150	Mg/nm3	26.85	29.95
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	1.44
Ausmelt RMH	PM	50	Mg/nm3	15.09	35.56
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	1.01
Ausmelt Hygiene	PM	50	Mg/nm3	11.73	29.65
	Lead	10	Mg/nm3	BLQ(LOQ 0.005)	1.38

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

Annexure -HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter Stack Monitoring Results (PM) (APR'20 - SEPT'20)

Location	Parameters	Limit	Unit	Result Apr-Jun'20	Result Jul-Sept'20
H-1 ZMC – 1st	PM	50	Mg/nm3	26.80	21.48
H-1 ZMC - 2nd	PM	50	Mg/nm3	13.07	23.69
H-1 Zinc Dust	PM	50	Mg/nm3	14.04	28.85
H-2 ZMC in side	PM	50	Mg/nm3	20.19	22.39
H-2 Zinc Dross	PM	50	Mg/nm3	20.92	37.78
H-2 Zinc Dust	PM	50	Mg/nm3	30.28	31.84
CPP Unit - 1 & 2	PM	50	Mg/nm3	30.75	29.85
CPP Unit - 3	PM	50	Mg/nm3	34.19	42.56

1) Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter Treated Water Monitoring Results

(Apr'20 - Sept'20)

ETP Out Let - (Hydro - 2)

Parameter	Unit	Limit	Result (Apr-Jun'20)	Result (Jul-Sept'20)
pH	-	5.5 - 9.0	7.21	7.28
Chloride	Mg/I	1000	144	479.85
Oil & Grease	Mg/I	10.0	BDĽ	3.0
Total Residual Chlorine	Mg/I	1.0	BDL	BDL
Ammonical Nitrogen	Mg/I	50.0	9.09	2.80
Nitrate Nitrogen	Mg/I	10.0	BDL	1.20
BOD	Mg/l	30	5.00	5.2
COD	Mg/I	250	16.1	36
TSS	Mg/l	100	BDL	12
Fluoride	Mg/I	2.0	0.9	0.85

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

Sensitivity: Internal (C3)

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter <u>Treated Water Monitoring Results</u> (Apr'20-Sept'20)

Parameter	Unit	Limit	Result (Apr-Jun'20)	Result (Jul-Sept'20)
Phosphate	Mg/I	5.0	0.03	BDL
Cyanide	Mg/I	0.2	BDL	BDL
Cadmium	Mg/l	2.0	BDL	BDL
Chromium	Mg/I	2.0	BDL	BDL
Copper	Mg/l	3.0	BDL	BDL
Iron as Fe	Mg/l	Not Specified	0.14	BDL
Lead as Pb	Mg/l	0.1	BDL	0.02
Nickel	Mg/l	3.0	BDL	BDL
Zinc	Mg/I	5.00	BDL	0.37

ETP Out Let - (Hydro - 2)

(Tarun Kumar Meghwal)

Environment Head Chanderia Lead Zinc Smelter

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter <u>Treated Water Monitoring Results</u> (Apr'20-Sept'20)

ETP Out Let - (PYRO)

Parameter	Unit	Limit	Result (Apr-Jun'20)	Result (Jul-Sept'20)
рН	-	5.5 - 9.0	7.26	8.12
Chloride	Mg/I	1000	141.00	541.75
Oil & Grease	Mg/I	10.0	BDL	5
Total Residual Chlorine	Mg/I	1.0	BDL	BDL
Ammonical Nitrogen	Mg/I	50.0	8.81	3.40
Nitrate Nitrogen	Mg/I	10.0	BDL	2.25
BOD	Mg/I	30	7.40	10.7
COD	Mg/I	250	28.20	62.47
TSS	Mg/I	100	BDL	15
Fluoride	Mg/I	2.0	0.9	1.08

Tarun Kumar Meghwal

Tarun Kumar Megnwai Environment Head Chanderia Lead Zinc Smelter

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter <u>Treated Water Monitoring Results</u> (Apr'20-Sept'20)

<u>Out Let – (PYRO)</u> Parameter	Unit	Limit	Result (Apr-Jun'20)	Result (Jul-Sept'20)
Phosphate	Mg/l	5.0	0.04	0.15
Cyanide	Mg/l	0.2	BDL	BDL
Cadmium	Mg/l	2.0	BDL	BDL
Chromium	Mg/I	2.0	BDL	BDL
Copper	Mg/I	3.0	BDL	BDL
Iron as Fe	Mg/I	Not Specified	0.11	BDL
Lead as Pb	Mg/I	0.1	BDL	0.03
Nickel	Mg/I	3.0	BDL	BDL
Zinc	Mg/l	5.00	BDL	0.35

Tarun Kumar Meghwar

Environment Head Chanderia Lead Zinc Smelter

Annexure -HINDUSTAN ZINC LIMITED Chanderia Lead Zinc Smelter <u>Water Monitoring Results</u> (Apr'20-Sept'20)

Bearach River Up Stream Report

Parameter	Unit	Limit	Result (Apr-Jun'20)	Result (Jul-Sept'20)
рН	-	6.5 - 8.5	8.32	7.66
Zinc	Mg/l	15.0	0.353	1.96
Lead	Mg/l	0.1	BDL	BDL
Cadmium	Mg/l	0.01	0.05	0.038
Copper	Mg/l	1.5	BDL	BDL
Iron	Mg/l	5.0	BDL	BDL
Hardness	Mg/I	600	604	652
Chloride	Mg/I	600	277.95	218.37
Sulphate	Mg/I	1000	102.80	115.23

(0 Tarun Kumar Meghwat

Environment Head Chanderia Lead Zinc Smelter

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter <u>Water Monitoring Results</u> (Apr'20-Sept'20)

Bearach River Down Stream Report

Parameter	Unit	Limit	Result (Apr-Jun'20)	Result (Jul-Sept'20)
pН	-	6.5 - 8.5	8.37	7.58
Zinc	Mg/I	15.0	0.067	1.58
Lead	Mg/I	0.1	BDL	0.27
Cadmium	Mg/I	0.01	BDL	.073
Copper	Mg/I	1.5	BDL	BDL
Iron	Mg/l	5.0	BDL	BDL
Hardness	Mg/I	600	456	636
Chloride	Mg/I	600	207.02	241.06
Sulphate	Mg/I	1000	106.60	105.32

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

Hindustan Zinc Limited Chanderia Lead Zinc Smelter Complex Putholi, Chanderia , Dist. Chittorgarh, Rajasthan.

ACID PLANT MONITORING Quarterly Monitoring (Apr'20-Sept'20)

Month Location	Parameters	Prescribed Limits	Apr-June'20	July-Sept'20
Acid Plant* (Hydro-1)	SO ₂ (2 Kg/T of H ₂ SO ₄ Production)=224 PPM	224 ppm	106.00 ppm 0.97 kg/T	77.49 ppm 0.97 kg/T
	ACID MIST	50 (mg/nm3)	35.80	26.38
Acid Plant* (Hydro-2)	SO ₂ (2 Kg/T of H ₂ SO ₄ Production)=224 PPM	224 ppm	110.00 ppm 1.10 kg/T	92.35 ppm 1.10 kg/T
	ACID MIST	50 (mg/nm3)	23.00	34.28
TGT Stack (Pyro Plant)	SO ₂ (2 Kg/T of H ₂ SO ₄ Production)=224 PPM	224 ppm	86.00 ppm 1.10 kg/T	54.50 ppm 1.10 kg/T
	ACID MIST	50 (mg/nm3)	29.10	29.95
Cansolve (Ausmelt Plant)	SO ₂ (2 Kg/T of H ₂ SO ₄ Production)=224 PPM	224 ppm	96.00 ppm 0.99 kg/T	91.05 ppm 0.99 kg/T
	ACID MIST	50 (mg/nm3)	33.03	35.52

Sumar Tarun

Meghwal **Environment Head** Chanderia Lead Zinc Smelter

Annexure –

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter

Ambient Air Quality Monitoring Results

Quarterly Monitoring (Apr-June'20)

Parameters (Values are in μg/m³)							
PM (2.5)	PM (10)	со	NOx	SO ₂			
60 µg/m³	100 µg/m³	4000 µg/m ³	80 µg/m³	80 µg/m³			
48.65	88.16	0.50	27.47	7.95			
49.21	92.45	0.63	23.92	7.50			
47.85	86.58	0.75	30.55	8.30			
36.52	73.01	0.50	25.32	8.75			
	60 μg/m ³ 48.65 49.21 47.85	PM (2.5) PM (10) 60 μg/m³ 100 μg/m³ 48.65 88.16 49.21 92.45 47.85 86.58	CValues are in μg/m PM (2.5) PM (10) CO 60 μg/m³ 100 μg/m³ 4000 μg/m³ 48.65 88.16 0.50 49.21 92.45 0.63 47.85 86.58 0.75	(Values are in μg/m³) PM (2.5) PM (10) CO NOx 60 μg/m³ 100 μg/m³ 4000 μg/m³ 80 μg/m³ 48.65 88.16 0.50 27.47 49.21 92.45 0.63 23.92 47.85 86.58 0.75 30.55			

Ambient Air Quality Monitoring Results

Quarterly Monitoring (Jul-Sept'20)

Name of Monitoring Station	Parameters (Values are in μg/m³)							
	PM (2.5)	PM (10)	со	NOx	SO ₂			
	60 µg/m³	100 µg/m³	4000 µg/m³	80 µg/m³	80 µg/m³			
Near CISF Colony C1	36.62	65.48	320	27.71	28.87			
Near LOCO Shed C2	36.52	70.84	370	32.39	31.26			
Near Slag Gate	37.49	71.27	410	33.50	35.14			
Near DM Plant	37.74	72.10	380	29.38	33.20			

Tarun Kumar Megha

Environment Head Chanderia Lead Zinc Smelter

Annexure

HINDUSTAN ZINC LIMITED

CHANDERIA LEAD ZINC SMELTER

Ambient Air Quality Monitoring Report (Outside Plant)

Quarterly Monitoring (Apr'20 - Sept'20)

Month	Devenuetore	Limit	(Apr-Jun'20)	(Jul-Sept'20)	
Village	Parameters	Unit			
	PM-10	100 µg/m ³	84.32	69.95	
	PM-2.5	60 µg/m ³	42.13	28.74	
Putholi	SO2	80 µg/m³	6.56	15.56	
	NOx	80 µg/m ³	31.11	26.35	
	Pb	1.0 µg/m³	0.01	0.19	
	PM-10	100 µg/m ³	94.78	64.78	
	PM-2.5	60 µg/m³	35.25	27.79	
Vlunga ka khera	SO2	80 µg/m³	8.61	22.14	
	NOx	80 µg/m ³	36.01	15.54	
	Pb	1.0 µg/m³	0.01	0.16	
	PM-10	100 µg/m³	92.24	66.58	
	PM-2.5	60 µg/m³	40.70	32.85	
Nagari	SO2	80 µg/m³	6.77	14.68	
	NOx	80 µg/m³	26.26	18.57	
	Pb	1.0 µg/m³	0.002	0.18	
	PM-10	100 µg/m ³	78.24	62.57	
	PM-2.5	60 µg/m ³	50.12	30.28	
Biliya	SO2	80 µg/m ³	6.96	24.40	
	NOx	80 µg/m ³	29.65	16.89	
	Pb	1.0 µg/m³	0.002	0.14	

CP) Tarun Kumar Meghwat

Environment Head Chanderia Lead Zinc Smelter

	PM-10	100 µg/m ³	72.41	63.48
	PM-2.5	60 µg/m ³	37.55	27.74
Ajoliya Ka Khera	SO2	80 µg/m ³	8.61	15.14
	NOx	80 µg/m ³	30.65	16.59
	Pb	1.0 μg/m³	0.01	0.09
	PM-10	100 µg/m³	62.78	62.11
	PM-2.5	60 μg/m³	33.45	28.87
Anwalhera	SO2	80 µg/m³	7.15	14.58
	NOx	80 µg/m³	29.91	17.76
	Pb	1.0 µg/m ³	0.005	0.18
	PM-10	100 µg/m³	86.33	58.60
	PM-2.5	60 µg/m ³	39.65	28.57
Zinc Nagar	SO2	80 µg/m ³	9.43	10.33
	NOx	80 µg/m ³	26.08	14.41
	Pb	1.0 µg/m ³	0.008	0.12

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter

Ambient NOISE Monitoring Results

(Apr'20 - Sept'20)

April to June - 2020

S.No.	Testing Protocol	Parameters	Point of Collection	Observed Value	Observed Value	
			Noise Standard(dB)	DAY - 75	Night – 70	
1	IS 9989	Noise Level (dB)	Near Loco shade C2	53.2	48.9	
2	IS 9989	Noise Level (dB)	Near Slag gate	58.2	53.6	
3	IS 9989	Noise Level (dB)	Near DM Plant	58.3	53.7	
4	IS 9989	Noise Level (dB)	Near CISF Colony C1	52.2	47.6	

July to Sept - 2020

S.No.	Testing Protocol	•		Observed Value	Observed Value	
		-	Noise Standard(dB)	DAY - 75	Night – 70	
1	IS 9989	Noise Level (dB)	Near Loco shade C2	67.2	57.6	
2	IS 9989	Noise Level (dB)	Near Slag gate	64.8	55.0	
3	IS 9989	Noise Level (dB)	Near DM Plant	72.4	64.5	
4	IS 9989	Noise Level (dB)	Near CISF Colony C1	66.7	56.5	

Tarun Kumar Meghwal Environment Head Chanderia Lead Zinc Smelter

Sensitivity: Internal (C3)

HINDUSTAN ZINC LIMITED

Chanderia Lead Zinc Smelter

Ambient Air Quality (CAAQM) Report

		AMBIENT A	IR QUALI	TY STAT	US OF CI	LZS		<u></u>		
Direction	CAAQMS NO.1 Near C1 Office									
West	LOCATION									
	Parameter	Standard of AAQ	APRIL	MAY	JUNE	JULY	AUGUST	SEPT		
	PM 10	100	84	87	74	50	34	68		
	SOX	80	19.66	21.13	20.09	20.32	22.60	23.90		
	NOX	80	16.6	16.8	14.3	12.3	14.5	16.4		
Direction		(NO.2 DM	Plant – (CPP	<u> </u>			
East		LOCATION								
	Dererseter	Standard of				1				
San Arabi	Parameter	AAQ	APRIL	MAY	JUNE	JULY	AUGUST	SEPT		
	PM 10	100	76	83	75	45	29	59		
	SOX	80	36.3	47.3	41.1	36.5	29.8	27.9		
	NOX	80	17.8	25.1	23.8	19.5	15.5	18.5		
Direction		C	AAQMS N	0.3 Chi	ttorgarh	Fort	<u> </u>			
South	LOCATION									
	Parameter	Standard of AAQ	APRIL	MAY	JUNE	JULY	AUGUST	SEPT		
	PM 10	100	66	62	55	48	44	51		
	SOX	80	8.3	7.6	10.1	10.6	10.4	10.7		
	NOX	80	22.5	17.9	23.8	23.5	21.7	22.4		
Direction		CAAG	MS NO.4	Pond N	o 1 (New	Station)	<u> </u>			
North	LOCATION									
	Parameter	Standard of AAQ	APRIL	MAY	JUNE	JULY	AUGUST	SEPT		
	PM 2.5	60	37	27	40	35	24	34		
	PM 10	100	77	71	84	80	55	71		
	SOX	80	29.5	25.2	22.3	23.4	23.2	22.1		
	NOX	80	7.6	7.4	4.4	4.5	4.7	3.7		

Tarun Kumar Meghwal

Environment Head Chanderia Lead Zinc Smelter

